Class Specific Feature Selection for Identity Validation using Dynamic Signatures
نویسندگان
چکیده
منابع مشابه
Proposed Feature Selection for Dynamic Thermal Management in Multicore Systems
Increasing the number of cores in order to the demand of more computing power has led to increasing the processor temperature of a multi-core system. One of the main approaches for reducing temperature is the dynamic thermal management techniques. These methods divided into two classes, reactive and proactive. Proactive methods manage the processor temperature, by forecasting the temperature be...
متن کاملClass-Specific Feature Selection for One-Against-All Multiclass SVMs
This paper proposes a method to perform class-specific feature selection in multiclass support vector machines addressed with the one-against-all strategy. The main issue arises at the final step of the classification process, where binary classifier outputs must be compared one against another to elect the winning class. This comparison may be biased towards one specific class when the binary ...
متن کاملHandling Class Imbalance Problem Using Feature Selection
1 Introduction The class imbalance problem is a challenge to machine learning and data mining, and it has attracted significant research recent years. A classifier affected by the class imbalance problem for a specific data set would see strong accuracy overall but very poor performance on the minority class. The imbalance data sets are pervasive in real-world applications. Examples of these ki...
متن کاملFeature Selection for Manufacturing Process Monitoring Using Cross-Validation
A novel algorithm is developed for feature selection and parameter tuning in quality monitoring of manufacturing processes using cross-validation. Due to the recent development in sensing technology, many on-line signals are collected for manufacturing process monitoring and feature extraction is then performed to extract critical features related to product/process quality. However, lack of pr...
متن کاملFeature Selection for Multi-class Problems Using Support Vector Machines
Since feature selection can remove the irrelevant features and improve the performance of learning systems, it is an crucial step in machine learning. The feature selection methods using support vector machines have obtained satisfactory results, but the previous works are usually for binary classification, and needs auxiliary techniques to be extended to multiple classification. In this paper,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biometrics & Biostatistics
سال: 2013
ISSN: 2155-6180
DOI: 10.4172/2155-6180.1000160